
Resit Exam Calculus 2

2014

The exam consists of 4 problems. You have 180 minutes to answer the ques-
tions. You can achieve 100 points which includes a bonus of 10 points.

1. [10 Points] Let f : R2 → R be a differentiable function, and let

w(x, y, z) = f(
y − x
xy

,
z − x
xz

).

Show that

x2
∂w

∂x
+ y2

∂w

∂y
+ z2

∂w

∂z
= 0.

2. [10+5 Points] Let C be the curve parametrized by r : [0, 2π]→ R3,

r(t) = (sin t− t cos t) i + (cos t+ t sin t) j + 2k.

(a) Find the parametrization of C by arc length.

(b) For each point on C, compute the curvature of C at this point.

3. [7+8 Points] Consider the ellipsoid

x2 + 2y2 + 3z2 = 6.

(a) Compute the tangent plane of the ellipsoid at the point (x, y, z) = (−1,−1,−1).

(b) Use the Method of Lagrange Multipliers to find the radius of the smallest sphere
centered at the origin for which the ellipsoid fits inside.

4. [12+8 Points] Let a, b and c be functions from R to R of class C1.

(a) Show that

F = (a(x) + y + z) i + (x+ b(y) + z) j + (x+ y + c(z))k

is conservative, and determine a potential function for F.

(b) For a(x) = x, b(y) = y2 and c(z) = z3, compute the line integral along the
straight line segment starting at the point p = i + j and ending at the point
q = j + k. Verify this result using the potential function found in part (a) .

5. [6+4 Points]

(a) Give the precise statements of Stokes’ and Green’s Theorems.

(b) Show that Green’s Theorem follows from Stokes’ Theorem.

6. [20 Points] Let S be the surface defined by z = e1−x
2−y2 , z ≥ 1, oriented by the

upward normal, and let
F = x i + y j + (2− 2z)k.

Use Gauß’ Theorem to calculate the flux of F through S.



Solutions

1. Let

u =
y − x
xy

and v =
z − x
xz

.

Then, by the chain rule,

∂w

∂x
=

∂f

∂u

∂u

∂x
+
∂f

∂v

∂v

∂x
,

∂w

∂y
=

∂f

∂u

∂u

∂y
+
∂f

∂v

∂v

∂y
,

∂w

∂z
=

∂f

∂u

∂u

∂z
+
∂f

∂v

∂v

∂z
.

Straightforward computations give

∂u

∂x
= − 1

x2
,

∂u

∂y
=

1

y2
,

∂u

∂z
= 0,

∂v

∂x
= − 1

x2
,

∂v

∂y
= 0,

∂v

∂z
=

1

z2
.

Thus

x2
∂w

∂x
+ y2

∂w

∂y
+ z2

∂w

∂z

=x2
(∂f
∂u

∂u

∂x
+
∂f

∂v

∂v

∂x

)
+ y2

(∂f
∂u

∂u

∂y
+
∂f

∂v

∂v

∂y

)
+ z2

(∂f
∂u

∂u

∂z
+
∂f

∂v

∂v

∂z

)
=x2

(∂f
∂u

(− 1

x2
) +

∂f

∂v
(− 1

x2
)
)

+ y2
(∂f
∂u

1

y2
+
∂f

∂v
0
)

+ z2
(∂f
∂u

0 +
∂f

∂v

1

z2
)

=
∂f

∂u
(−1 + 1 + 0) +

∂f

∂v
(−1 + 0 + 1)

=0.

2. (a) The arc length is defined as

s(t) =

∫ t

0

|r′(τ)| dτ .

We have r′(t) = (cos t − cos t + t sin t) i + (− sin t + sin t + t cos t) j + 0k =
t sin t i + t cos t j, and hence

|r′(t)| =
√
t2 sin2 t+ t2 cos2 t = |t| = t for t ≥ 0.

Hence

s(t) =

∫ t

0

τ dτ =
1

2
t2.

Solving for t gives
t(s) =

√
2s.

So the parametrization of C by arc length is given by

r̃(s) = r(t(s)) = r(t) = (sin t(s)− t(s) cos t(s)) i + (cos t(s) + t(s) sin t(s)) j + 2k

= (sin
√

2s−
√

2s cos
√

2s) i + (cos
√

2s+
√

2s sin
√

2s) j + 2k

where 0 ≤ s ≤ 2π2 = s(2π).
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(b) The curvature κ is defined as

κ =

∣∣∣∣dTds
∣∣∣∣ ,

where T is the unit tangent vector. By the chain rule

κ =
1

|r′(t)|

∣∣∣∣dTdt
∣∣∣∣ ,

From part (a) we get

T =
1

|r′(t)|
r′(t) =

1

t

(
t sin t i + t cos t j

)
= sin t i + cos t j

which gives
dT

dt
= cos t i− sin t j

and hence ∣∣∣∣dTdt
∣∣∣∣ = 1.

The curvature of C at r(t) is thus

κ =
1

t
.

3. (a) First method: The ’lower’ half of the ellipsoid can be considered to be the graph
of the function

f(x, y) = −
√

6− (3x2 + 2y2).

We can thus compute tangent plane of the ellipsoid at (x, y, z) = (−1,−1,−1)
from the linearization of f at (x, y) = (−1,−1) which is given by

L(x, y) = f(−1,−1) + fx(−1,−1)(x+ 1) + fy(−1,−1)(y + 1).

Using fx(x, y) = 3x/
√

6− 3x2 − 2y2 and fy(x, y) = 2y/
√

6− 3x2 − 2y2 and
hence fx(−1,−1) = −3 and fy(−1,−1) = −2 we find for the tangent plane

z = L(x, y) = −1 + 3(x+ 1) + 2(y + 1) = 4 + 3x+ 2y.

Second method: We can view the ellipsoid to be given by a level set of the
function

F (x, y, z) = 3x2 + 2y2 + z2,

and we can hence write the tangent plane as

∇F (−1,−1,−1) · (x+ 1, y + 1, z + 1) = 0.

We have ∇F (x, y, z) = (6x, 4y, 2z) and hence ∇F (−1,−1,−1) = (−6,−4,−2).
For the tangent plane we thus find

(−6,−4,−2) · (x+ 1, y + 1, z + 1) = 0,

or equivalently,
z = 4 + 3x+ 2y

which agrees with the result obtained from the first method.
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(b) Let
g(x, y, z) = x2 + y2 + z2

which gives the square distance of (x, y, z) to the origin. To find the smallest
sphere for which the ellipsoid fits inside we study the extrema of g under the
constraint F (x, y, z) = 3x2 + 2y2 + z2 = 6. By the method of Langrange multi-
pliers there is a λ ∈ R such that ∇g = λ∇F at the extremum. This yields the
set of equations

gx = λFx,
gy = λFy,
gz = λFz,

F (x, y, z) = 6,

i.e.
2x = λ6x,
2y = λ4y,
2z = λ2z,

3x2 + 2y2 + z2 = 6,

which is equivalent to
x = 0 ∪ λ = 1

3
,

y = 0 ∪ λ = 1
2
,

z = 0 ∪ λ = 1,
3x2 + 2y2 + z2 = 6.

This in turn is equivalent to

x = y = 0 ∩ λ = 1 or x = z = 0 ∩ λ = 1
2

or y = z = 0 ∩ λ = 1
3
,

3x2 + 2y2 + z2 = 6

or
x = y = 0, z = ±

√
6, λ = 1 or

x = z = 0, y = ±
√

3, λ = 1
2

or

y = z = 0, x = ±
√

2, λ = 1
3
.

We have g(0, 0,±
√

6) = 6, g(0,±
√

3, 0) = 3 and g(±
√

2, 0) = 2. The smallest
sphere for which the ellipsoid fits inside has radius where g has a maximium on
the ellipsoid, i.e. the sphere has radius

√
6 which agrees with the largest semi

axis of the ellipsoid.

4. (a) Since F is defined on a simply connected domain it is sufficient to show that
∇× F = 0 in order to prove that F is conservative.:

∇×F(x, y, z) = (∂yFz−∂zFy, ∂zFx−∂xFz, ∂xFy−∂yFx) = (1−1, 1−1, 1−1) = 0.

The potential function f : R3 → R satisfies ∇f(x, y, z) = F, i.e.

∂f

∂x
= a(x) + y + z , (1)

∂f

∂y
= x+ b(y) + z , (2)

∂f

∂z
= x+ y + c(z) . (3)
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From Eq. (1) we get ∂f
∂x

= a(x) + y + z. Integrating with respect to x gives
f(x, y, z) = A(x) + yx + zx + g(y, z), where A is an integral of a (note that
different choices for A differ only by constants which can be absorbed in the
function g). Differentiating this f with respect to y should agree with the right

hand side of Eq. (2). Equating the two gives ∂g(y,z)
∂y

= b(y) + z. Integrating with

respect to y gives g(y, z) = B(y)+zy+h(z) where B is an integral of b (similarly
to above different choices for B differ by constants which can be absorbed in the
function h). Hence f(x, y, z) = A(x)+yx+zx+B(y)+yz+h(z). Differentiating
this f with respect to z should agree with the right hand side of Eq. (3). Equating
the two gives c(z) = h′(z). Integrating with respect to z gives h(z) = C(z) + d
where d ∈ R is a constant. Hence

f(x, y, z) = A(x) +B(y) + C(z) + xy + xz + yz + d .

(b) Here F(x, y, z) = (x + y + z, x + y2 + z, x + y + z3). As a parametrization
of the straight line segment connecting p and q we choose r : [0, 1] → R3,
t 7→ (1− t)p + tq = (1− t, 1, t). Hence∫

pq

F · ds =

∫ 1

0

F(r(t)) · r′(t) dt =

∫ 1

0

(2, 2, 2− t+ t3) · (−1, 0, 1) dt

=

∫ 1

0

(t3 − t) dt = [
1

4
t4 − 1

2
t2]10 = −1

4
.

Following part (a) the potential function is f(x, y, z) = 1
2
x2 + 1

3
y3 + 1

4
z4 + xy +

xz + yz + d. Hence f(q)− f(p) = 1
3

+ 1
4
−
(
1
2

+ 1
3

)
= −1

4
.

5. See Stewart’s book.

6. Gauß’ Theorem relates a triple integral over a simple solid region to a surface integral
over its boundary. In our case, we first need to ’close up’ the surface S before it can be
the boundary of a simple solid region. At height z = 1, the surface z = e1−x

2−y2 , z ≥ 1
is the circle x2+y2 = 1. Let S ′ be the closed disk given by x2+y2 ≤ 1, z = 1 oriented
by downward-pointing normal (i.e. −k). Then S ′ and S enclose a simple solid region
we call E. Then the boundary of E is given by S ′ ∪ S and E induces the same
orientation on S and S ′ that they already had. Gauß’ Theorem now yields∫∫∫

E

∇ · F dV =

∫∫
S

F · dS +

∫∫
S′
F · dS.

We have F = x i+y j+(2−2z)k, so that∇·F = 1+1−2 = 0. Hence
∫∫∫

E
∇·F dV = 0,

so that∫∫
S

F · dS = −
∫∫

S′
F · dS. = −

∫∫
S′
F ·−k dS =

∫∫
S′
F ·k dS =

∫∫
S′

2−2z dS = 0,

because we have 2− 2z = 0 on S ′.
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