Resit Exam Calculus 2

The exam consists of 4 problems. You have 180 minutes to answer the questions. You can achieve 100 points which includes a bonus of 10 points.

1. [10 Points] Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a differentiable function, and let

$$
w(x, y, z)=f\left(\frac{y-x}{x y}, \frac{z-x}{x z}\right)
$$

Show that

$$
x^{2} \frac{\partial w}{\partial x}+y^{2} \frac{\partial w}{\partial y}+z^{2} \frac{\partial w}{\partial z}=0
$$

2. $[\mathbf{1 0}+\mathbf{5}$ Points $]$ Let C be the curve parametrized by $\mathbf{r}:[0,2 \pi] \rightarrow \mathbb{R}^{3}$,

$$
\mathbf{r}(t)=(\sin t-t \cos t) \mathbf{i}+(\cos t+t \sin t) \mathbf{j}+2 \mathbf{k}
$$

(a) Find the parametrization of C by arc length.
(b) For each point on C, compute the curvature of C at this point.
3. $[7+8$ Points] Consider the ellipsoid

$$
x^{2}+2 y^{2}+3 z^{2}=6 .
$$

(a) Compute the tangent plane of the ellipsoid at the point $(x, y, z)=(-1,-1,-1)$.
(b) Use the Method of Lagrange Multipliers to find the radius of the smallest sphere centered at the origin for which the ellipsoid fits inside.
4. $[12+8$ Points $]$ Let a, b and c be functions from \mathbb{R} to \mathbb{R} of class C^{1}.
(a) Show that

$$
\mathbf{F}=(a(x)+y+z) \mathbf{i}+(x+b(y)+z) \mathbf{j}+(x+y+c(z)) \mathbf{k}
$$

is conservative, and determine a potential function for \mathbf{F}.
(b) For $a(x)=x, b(y)=y^{2}$ and $c(z)=z^{3}$, compute the line integral along the straight line segment starting at the point $\mathbf{p}=\mathbf{i}+\mathbf{j}$ and ending at the point $\mathbf{q}=\mathbf{j}+\mathbf{k}$. Verify this result using the potential function found in part (a).
5. [6+4 Points]
(a) Give the precise statements of Stokes' and Green's Theorems.
(b) Show that Green's Theorem follows from Stokes' Theorem.
6. [20 Points] Let S be the surface defined by $z=\mathrm{e}^{1-x^{2}-y^{2}}, z \geq 1$, oriented by the upward normal, and let

$$
\mathbf{F}=x \mathbf{i}+y \mathbf{j}+(2-2 z) \mathbf{k} .
$$

Use Gauß' Theorem to calculate the flux of \mathbf{F} through S.

Solutions

1. Let

$$
u=\frac{y-x}{x y} \text { and } v=\frac{z-x}{x z} .
$$

Then, by the chain rule,

$$
\begin{aligned}
\frac{\partial w}{\partial x} & =\frac{\partial f}{\partial u} \frac{\partial u}{\partial x}+\frac{\partial f}{\partial v} \frac{\partial v}{\partial x} \\
\frac{\partial w}{\partial y} & =\frac{\partial f}{\partial u} \frac{\partial u}{\partial y}+\frac{\partial f}{\partial v} \frac{\partial v}{\partial y} \\
\frac{\partial w}{\partial z} & =\frac{\partial f}{\partial u} \frac{\partial u}{\partial z}+\frac{\partial f}{\partial v} \frac{\partial v}{\partial z}
\end{aligned}
$$

Straightforward computations give

$$
\frac{\partial u}{\partial x}=-\frac{1}{x^{2}}, \quad \frac{\partial u}{\partial y}=\frac{1}{y^{2}}, \quad \frac{\partial u}{\partial z}=0, \quad \frac{\partial v}{\partial x}=-\frac{1}{x^{2}}, \quad \frac{\partial v}{\partial y}=0, \quad \frac{\partial v}{\partial z}=\frac{1}{z^{2}} .
$$

Thus

$$
\begin{aligned}
& x^{2} \frac{\partial w}{\partial x}+y^{2} \frac{\partial w}{\partial y}+z^{2} \frac{\partial w}{\partial z} \\
= & x^{2}\left(\frac{\partial f}{\partial u} \frac{\partial u}{\partial x}+\frac{\partial f}{\partial v} \frac{\partial v}{\partial x}\right)+y^{2}\left(\frac{\partial f}{\partial u} \frac{\partial u}{\partial y}+\frac{\partial f}{\partial v} \frac{\partial v}{\partial y}\right)+z^{2}\left(\frac{\partial f}{\partial u} \frac{\partial u}{\partial z}+\frac{\partial f}{\partial v} \frac{\partial v}{\partial z}\right) \\
= & x^{2}\left(\frac{\partial f}{\partial u}\left(-\frac{1}{x^{2}}\right)+\frac{\partial f}{\partial v}\left(-\frac{1}{x^{2}}\right)\right)+y^{2}\left(\frac{\partial f}{\partial u} \frac{1}{y^{2}}+\frac{\partial f}{\partial v} 0\right)+z^{2}\left(\frac{\partial f}{\partial u} 0+\frac{\partial f}{\partial v} \frac{1}{z^{2}}\right) \\
= & \frac{\partial f}{\partial u}(-1+1+0)+\frac{\partial f}{\partial v}(-1+0+1) \\
= & 0 .
\end{aligned}
$$

2. (a) The arc length is defined as

$$
s(t)=\int_{0}^{t}\left|\mathbf{r}^{\prime}(\tau)\right| \mathrm{d} \tau
$$

We have $\mathbf{r}^{\prime}(t)=(\cos t-\cos t+t \sin t) \mathbf{i}+(-\sin t+\sin t+t \cos t) \mathbf{j}+0 \mathbf{k}=$ $t \sin t \mathbf{i}+t \cos t \mathbf{j}$, and hence

$$
\left|\mathbf{r}^{\prime}(t)\right|=\sqrt{t^{2} \sin ^{2} t+t^{2} \cos ^{2} t}=|t|=t \text { for } t \geq 0
$$

Hence

$$
s(t)=\int_{0}^{t} \tau \mathrm{~d} \tau=\frac{1}{2} t^{2}
$$

Solving for t gives

$$
t(s)=\sqrt{2 s}
$$

So the parametrization of C by arc length is given by

$$
\begin{aligned}
\tilde{\mathbf{r}}(s) & =\mathbf{r}(t(s))=\mathbf{r}(t)=(\sin t(s)-t(s) \cos t(s)) \mathbf{i}+(\cos t(s)+t(s) \sin t(s)) \mathbf{j}+2 \mathbf{k} \\
& =(\sin \sqrt{2 s}-\sqrt{2 s} \cos \sqrt{2 s}) \mathbf{i}+(\cos \sqrt{2 s}+\sqrt{2 s} \sin \sqrt{2 s}) \mathbf{j}+2 \mathbf{k}
\end{aligned}
$$

where $0 \leq s \leq 2 \pi^{2}=s(2 \pi)$.
(b) The curvature κ is defined as

$$
\kappa=\left|\frac{\mathrm{d} \mathbf{T}}{\mathrm{~d} s}\right|
$$

where \mathbf{T} is the unit tangent vector. By the chain rule

$$
\kappa=\frac{1}{\left|\mathbf{r}^{\prime}(t)\right|}\left|\frac{\mathrm{d} \mathbf{T}}{\mathrm{~d} t}\right|
$$

From part (a) we get

$$
\mathbf{T}=\frac{1}{\left|\mathbf{r}^{\prime}(t)\right|} \mathbf{r}^{\prime}(t)=\frac{1}{t}(t \sin t \mathbf{i}+t \cos t \mathbf{j})=\sin t \mathbf{i}+\cos t \mathbf{j}
$$

which gives

$$
\frac{\mathrm{d} \mathbf{T}}{\mathrm{~d} t}=\cos t \mathbf{i}-\sin t \mathbf{j}
$$

and hence

$$
\left|\frac{\mathrm{d} \mathbf{T}}{\mathrm{~d} t}\right|=1
$$

The curvature of C at $\mathbf{r}(t)$ is thus

$$
\kappa=\frac{1}{t}
$$

3. (a) First method: The 'lower' half of the ellipsoid can be considered to be the graph of the function

$$
f(x, y)=-\sqrt{6-\left(3 x^{2}+2 y^{2}\right)} .
$$

We can thus compute tangent plane of the ellipsoid at $(x, y, z)=(-1,-1,-1)$ from the linearization of f at $(x, y)=(-1,-1)$ which is given by

$$
L(x, y)=f(-1,-1)+f_{x}(-1,-1)(x+1)+f_{y}(-1,-1)(y+1) .
$$

Using $f_{x}(x, y)=3 x / \sqrt{6-3 x^{2}-2 y^{2}}$ and $f_{y}(x, y)=2 y / \sqrt{6-3 x^{2}-2 y^{2}}$ and hence $f_{x}(-1,-1)=-3$ and $f_{y}(-1,-1)=-2$ we find for the tangent plane

$$
z=L(x, y)=-1+3(x+1)+2(y+1)=4+3 x+2 y .
$$

Second method: We can view the ellipsoid to be given by a level set of the function

$$
F(x, y, z)=3 x^{2}+2 y^{2}+z^{2},
$$

and we can hence write the tangent plane as

$$
\nabla F(-1,-1,-1) \cdot(x+1, y+1, z+1)=0 .
$$

We have $\nabla F(x, y, z)=(6 x, 4 y, 2 z)$ and hence $\nabla F(-1,-1,-1)=(-6,-4,-2)$. For the tangent plane we thus find

$$
(-6,-4,-2) \cdot(x+1, y+1, z+1)=0
$$

or equivalently,

$$
z=4+3 x+2 y
$$

which agrees with the result obtained from the first method.
(b) Let

$$
g(x, y, z)=x^{2}+y^{2}+z^{2}
$$

which gives the square distance of (x, y, z) to the origin. To find the smallest sphere for which the ellipsoid fits inside we study the extrema of g under the constraint $F(x, y, z)=3 x^{2}+2 y^{2}+z^{2}=6$. By the method of Langrange multipliers there is a $\lambda \in \mathbb{R}$ such that $\nabla g=\lambda \nabla F$ at the extremum. This yields the set of equations

$$
\begin{aligned}
& g_{x}=\lambda F_{x}, \\
& g_{y}=\lambda F_{y}, \\
& g_{z}=\lambda F_{z}, \\
& F(x, y, z)=6
\end{aligned}
$$

i.e.

$$
\begin{gathered}
2 x=\lambda 6 x, \\
2 y=\lambda 4 y, \\
2 z=\lambda 2 z, \\
3 x^{2}+2 y^{2}+z^{2}=6,
\end{gathered}
$$

which is equivalent to

$$
\begin{gathered}
x=0 \cup \lambda=\frac{1}{3}, \\
y=0 \cup \lambda=\frac{1}{2}, \\
z=0 \cup \lambda=1, \\
3 x^{2}+2 y^{2}+z^{2}=6 .
\end{gathered}
$$

This in turn is equivalent to

$$
\begin{gathered}
x=y=0 \cap \lambda=1 \text { or } x=z=0 \cap \lambda=\frac{1}{2} \text { or } y=z=0 \cap \lambda=\frac{1}{3}, \\
3 x^{2}+2 y^{2}+z^{2}=6
\end{gathered}
$$

or

$$
\begin{array}{lll}
x=y=0, & z= \pm \sqrt{6}, & \lambda=1 \text { or } \\
x=z=0, & y= \pm \sqrt{3}, & \lambda=\frac{1}{2} \text { or } \\
y=z=0, & x= \pm \sqrt{2}, & \lambda=\frac{1}{3} .
\end{array}
$$

We have $g(0,0, \pm \sqrt{6})=6, g(0, \pm \sqrt{3}, 0)=3$ and $g(\pm \sqrt{2}, 0)=2$. The smallest sphere for which the ellipsoid fits inside has radius where g has a maximium on the ellipsoid, i.e. the sphere has radius $\sqrt{6}$ which agrees with the largest semi axis of the ellipsoid.
4. (a) Since \mathbf{F} is defined on a simply connected domain it is sufficient to show that $\nabla \times \mathbf{F}=0$ in order to prove that \mathbf{F} is conservative.:
$\nabla \times \mathbf{F}(x, y, z)=\left(\partial_{y} F_{z}-\partial_{z} F_{y}, \partial_{z} F_{x}-\partial_{x} F_{z}, \partial_{x} F_{y}-\partial_{y} F_{x}\right)=(1-1,1-1,1-1)=0$.
The potential function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ satisfies $\nabla f(x, y, z)=\mathbf{F}$, i.e.

$$
\begin{align*}
& \frac{\partial f}{\partial x}=a(x)+y+z \tag{1}\\
& \frac{\partial f}{\partial y}=x+b(y)+z \tag{2}\\
& \frac{\partial f}{\partial z}=x+y+c(z) \tag{3}
\end{align*}
$$

From Eq. (1) we get $\frac{\partial f}{\partial x}=a(x)+y+z$. Integrating with respect to x gives $f(x, y, z)=A(x)+y x+z x+g(y, z)$, where A is an integral of a (note that different choices for A differ only by constants which can be absorbed in the function g). Differentiating this f with respect to y should agree with the right hand side of Eq. (2). Equating the two gives $\frac{\partial g(y, z)}{\partial y}=b(y)+z$. Integrating with respect to y gives $g(y, z)=B(y)+z y+h(z)$ where B is an integral of b (similarly to above different choices for B differ by constants which can be absorbed in the function h). Hence $f(x, y, z)=A(x)+y x+z x+B(y)+y z+h(z)$. Differentiating this f with respect to z should agree with the right hand side of Eq. (3). Equating the two gives $c(z)=h^{\prime}(z)$. Integrating with respect to z gives $h(z)=C(z)+d$ where $d \in \mathbb{R}$ is a constant. Hence

$$
f(x, y, z)=A(x)+B(y)+C(z)+x y+x z+y z+d .
$$

(b) Here $\mathbf{F}(x, y, z)=\left(x+y+z, x+y^{2}+z, x+y+z^{3}\right)$. As a parametrization of the straight line segment connecting \mathbf{p} and \mathbf{q} we choose $\mathbf{r}:[0,1] \rightarrow \mathbb{R}^{3}$, $t \mapsto(1-t) \mathbf{p}+t \mathbf{q}=(1-t, 1, t)$. Hence

$$
\begin{aligned}
\int_{\mathbf{p q}} \mathbf{F} \cdot \mathrm{d} \mathbf{s} & =\int_{0}^{1} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) \mathrm{d} t=\int_{0}^{1}\left(2,2,2-t+t^{3}\right) \cdot(-1,0,1) \mathrm{d} t \\
& =\int_{0}^{1}\left(t^{3}-t\right) \mathrm{d} t=\left[\frac{1}{4} t^{4}-\frac{1}{2} t^{2}\right]_{0}^{1}=-\frac{1}{4}
\end{aligned}
$$

Following part (a) the potential function is $f(x, y, z)=\frac{1}{2} x^{2}+\frac{1}{3} y^{3}+\frac{1}{4} z^{4}+x y+$ $x z+y z+d$. Hence $f(q)-f(p)=\frac{1}{3}+\frac{1}{4}-\left(\frac{1}{2}+\frac{1}{3}\right)=-\frac{1}{4}$.
5. See Stewart's book.
6. Gauß' Theorem relates a triple integral over a simple solid region to a surface integral over its boundary. In our case, we first need to 'close up' the surface S before it can be the boundary of a simple solid region. At height $z=1$, the surface $z=\mathrm{e}^{1-x^{2}-y^{2}}, z \geq 1$ is the circle $x^{2}+y^{2}=1$. Let S^{\prime} be the closed disk given by $x^{2}+y^{2} \leq 1, z=1$ oriented by downward-pointing normal (i.e. $\mathbf{- k}$). Then S^{\prime} and S enclose a simple solid region we call E. Then the boundary of E is given by $S^{\prime} \cup S$ and E induces the same orientation on S and S^{\prime} that they already had. Gauß' Theorem now yields

$$
\iiint_{E} \nabla \cdot \mathbf{F} \mathrm{~d} V=\iint_{S} \mathbf{F} \cdot \mathrm{~d} \mathbf{S}+\iint_{S^{\prime}} \mathbf{F} \cdot \mathrm{d} \mathbf{S}
$$

We have $\mathbf{F}=x \mathbf{i}+y \mathbf{j}+(2-2 z) \mathbf{k}$, so that $\nabla \cdot \mathbf{F}=1+1-2=0$. Hence $\iiint_{E} \nabla \cdot \mathbf{F} \mathrm{~d} V=0$, so that

$$
\iint_{S} \mathbf{F} \cdot \mathrm{~d} \mathbf{S}=-\iint_{S^{\prime}} \mathbf{F} \cdot \mathrm{d} \mathbf{S} .=-\iint_{S^{\prime}} \mathbf{F} \cdot-\mathbf{k} \mathrm{d} S=\iint_{S^{\prime}} \mathbf{F} \cdot \mathbf{k} \mathrm{d} S=\iint_{S^{\prime}} 2-2 z \mathrm{~d} S=0
$$

because we have $2-2 z=0$ on S^{\prime}.

