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The exam consists of 4 problems. You have 180 minutes to answer the ques-
tions. You can achieve 100 points which includes a bonus of 10 points.

1. [10 Points] Let f : R* — R be a differentiable function, and let

w(z,y,2) = f( )-
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2. [104-5 Points] Let C be the curve parametrized by r : [0, 27] — R?,
r(t) = (sint — tcost)i+ (cost +tsint)j+ 2k.
(a) Find the parametrization of C' by arc length.
(b) For each point on C', compute the curvature of C' at this point.

3. [7+8 Points] Consider the ellipsoid
* +2y% + 322 = 6.
(a) Compute the tangent plane of the ellipsoid at the point (z,y,z) = (=1, -1, —1).

(b) Use the Method of Lagrange Multipliers to find the radius of the smallest sphere
centered at the origin for which the ellipsoid fits inside.

4. [12+4-8 Points] Let a, b and ¢ be functions from R to R of class C*.
(a) Show that
F=(az)+y+2)i+(x+by +2)j+@@+y+c(z)k
is conservative, and determine a potential function for F.
(b) For a(x) = z, b(y) = y* and c(z) = 23, compute the line integral along the

straight line segment starting at the point p = i 4+ j and ending at the point
q = j + k. Verify this result using the potential function found in part (a).

5. [6+4 Points]
(a) Give the precise statements of Stokes’ and Green’s Theorems.

(b) Show that Green’s Theorem follows from Stokes’” Theorem.

6. [20 Points| Let S be the surface defined by z = el=7*=%’ > > 1. oriented by the
upward normal, and let
F=zi+yj+(2-22)k

Use Gaufl’ Theorem to calculate the flux of F through S.



Solutions
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2. (a) The arc length is defined as

s(t) = /Ot ' (7)| dr

We have 1/(t) = (cost — cost + tsint)i + (—sint 4 sint + tcost)j + 0k =
tsinti+ tcostj, and hence

(1)) = V2sin? t + 12 cos? t = |t| =t for t > 0.
Hence

! 1
s(t) = / rdr = %
0 2
Solving for t gives
t(s) = V/2s.
So the parametrization of C' by arc length is given by
r(s) =r(t(s)) =r(t) = (sint(s) — t(s) cost(s))i+ (cost(s) + t(s)sint(s))j+ 2k

= (sinv/2s — V2scos V/25) i+ (cos V25 + V2ssin v2s) j + 2k

where 0 < s < 272 = 5(27).



(b)

The curvature k is defined as

dT
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ds |’
where T is the unit tangent vector. By the chain rule
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From part (a) we get
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The curvature of C' at r(¢) is thus
1
K=-.
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First method: The "lower’ half of the ellipsoid can be considered to be the graph
of the function

flx,y) = —/6 — (322 + 22).
We can thus compute tangent plane of the ellipsoid at (z,y,z2) = (-1, —1,—1)
from the linearization of f at (z,y) = (=1, —1) which is given by

L(xvy) - f(_17 _1> + fx(_L _1)(55 + 1) + fy(_17 _1)(y + 1)'

Using fo(z,y) = 32/4/6 — 322 —2y? and f,(z,y) = 2y/y/6 — 322 — 2y? and

hence f,(—1,—1) = =3 and f,(—1,—1) = —2 we find for the tangent plane
z=L(x,y)=—1+3x+1)+2(y+1) =4+ 3z +2y.

Second method: We can view the ellipsoid to be given by a level set of the
function
F(x,y,2) = 32% 4+ 2y* + 27,

and we can hence write the tangent plane as
VF(-1,-1,-1)-(z+1,y+ 1,24+ 1) =0.

We have VF(z,y,z) = (6x,4y,2z) and hence VF(—1,—-1,—1) = (—6,—4, —2).
For the tangent plane we thus find

(=6,—4,-2) - (z+1L,y+1,2+1) =0,

or equivalently,
z=44+3x+2y

which agrees with the result obtained from the first method.



(b) Let

g(z,y,2) =2 +y* + 2°

which gives the square distance of (z,y,z) to the origin. To find the smallest
sphere for which the ellipsoid fits inside we study the extrema of g under the
constraint F(x,y, z) = 3% + 2y* + 2% = 6. By the method of Langrange multi-
pliers there is a A € R such that Vg = AV I at the extremum. This yields the
set of equations

Gz = >\F:c>
gy = AF,
g = )\Fz>
F(z,y,z) =6,
1.e.
2x = \bz,
2y = My,
2z = A2z,

322 + 2y? + 22 =6,

which is equivalent to

szU)\:%,
z=0UN=1,

322 +2y? + 22 = 6.

This in turn is equivalent to

a::y:()ﬂ)\zlora::z:()ﬂ)\:%ory:z:()ﬂ)\:%,
302+ 22+ 22 =6

or
r=y=0, z=4v6, A=1lor
r=2=0, y==+V3, )\:%
y=2=0, z=+v2, A=1

We have ¢(0,0,£v6) = 6, ¢g(0,£v/3,0) = 3 and g(£+/2,0) = 2. The smallest
sphere for which the ellipsoid fits inside has radius where ¢ has a maximium on
the ellipsoid, i.e. the sphere has radius v/6 which agrees with the largest semi
axis of the ellipsoid.

or

Since F is defined on a simply connected domain it is sufficient to show that
V x F =0 in order to prove that F is conservative.:

VxF(z,y,2) = (0,F.—0.F,,0.Fy—,F.,0,F,—9,F,) = (1-1,1—-1,1—1) = 0.

The potential function f : R®> — R satisfies V f(x,y,2) = F, i.e.

)y, )
Z—chzx—kb(y)an, (2)
%:x—ky—i—c(z). (3)



From Eq. (1) we get % = a(x) + y + z. Integrating with respect to = gives
f(z,y,2) = A(x) + yx + zz + ¢g(y, z), where A is an integral of a (note that
different choices for A differ only by constants which can be absorbed in the
function g¢). Differentiating this f with respect to y should agree with the right
hand side of Eq. (2). Equating the two gives g(z’;’ = b(y) + 2. Integrating with
respect to y gives g(y, z) = B(y) 4+ zy+h(z) where B is an integral of b (similarly
to above different choices for B differ by constants which can be absorbed in the
function h). Hence f(z,y,2) = A(x)+yz+zx+ B(y) +yz+h(z). Differentiating
this f with respect to z should agree with the right hand side of Eq. (3). Equating
the two gives ¢(z) = I/(z). Integrating with respect to z gives h(z) = C(z) +d
where d € R is a constant. Hence

flz,y,2) =A(z)+ B(y) + C(2) +ay + vz +yz + d.

(b) Here F(z,y,2) = (x +y + 2,2 + y* + 2, + y + 2%). As a parametrization
of the straight line segment connecting p and q we choose r : [0,1] — R?,
t— (1—t)p+tq=(1—t,1,t). Hence

/F-ds _ /1F(r(t))-r’(t)dt:/1(2,2,2—t+t3)-(—1,0,1)dt

1 1 1 1
= 22— dt ==t — =)l = —= .
| —na = =5 =~

Following part (a) the potential function is f(z,y, 2) = 2% + 5¢° + 32* + 2y +
1
5 e

1
2
zz+yz+d. Hence f(q) — f(p) =3+3— (5 + -1
5. See Stewart’s book.

6. Gaul’ Theorem relates a triple integral over a simple solid region to a surface integral
over its boundary. In our case, we first need to ’close up’ the surface S before it can be
the boundary of a simple solid region. At height z = 1, the surface z = =y 2> 1
is the circle 22 +y? = 1. Let S’ be the closed disk given by 22 +y? < 1, z = 1 oriented
by downward-pointing normal (i.e. —k). Then S’ and S enclose a simple solid region
we call E. Then the boundary of E is given by S’ U S and E induces the same
orientation on S and S’ that they already had. Gauf3’ Theorem now yields

///V FdV = //F dS+//S/F ds.

We have F = zi+y j+(2—22) k, so that V-F = 141—-2 = 0. Hence [[[, V-FdV =0,
so that

//SF.dS:—///F-dS.:—//IF._de:///F-de:///Q—deSzO,

because we have 2 — 2z =0 on S’.



